logo
أرسل رسالة
foshan nanhai ruixin glass co., ltd
معلومات عنا
شريكك المهني والموثوق به
تأسست شركة فوشان نان هاي رويكسين للزجاج في عام 2013 ، وتقع في فوشان. أكثر من 10 سنوات من الخبرات في مجال الزجاج المكثف ، نحن نقدم منتجات وخدمات جيدة الجودة.لدينا هذه الشهادات العالمية: CCC ، CE ، SGCC و SAI. لدينا 5 مصانع فرعية ، جميعها مع منتجات مختلفة:واحد منها ينتج زجاج الحمام، واحد ينتج المرآة، واحد ينتج المنتجات الضخمة، واحد ينتج زجاج الفن الزخرفي، والآخر ينتج زجاج البناء الضخم. مصنعنا يقدم معدات وتكنولوجيا متقدمة للصقل، ينتج 600 ألف متر مربع من الزجاج المشدّد كل شهر، وفي الوقت نفسه، مصنعنا ...
يتعلم أكثر

0

سنة التأسيس:

0

مليون+
الموظفين

0

مليون+
خدمة الزبائن

0

مليون+
المبيعات السنوية:
الصين foshan nanhai ruixin glass co., ltd جودة عالية
ختم الثقة ، فحص الائتمان ، RoSH وتقييم قدرة المورد. الشركة لديها نظام صارم لمراقبة الجودة ومختبر اختبار احترافي.
الصين foshan nanhai ruixin glass co., ltd التنمية
فريق تصميم محترف داخلي و ورشة عمل الآلات المتقدمة يمكننا التعاون لتطوير المنتجات التي تحتاجها
الصين foshan nanhai ruixin glass co., ltd التصنيع
آلات آلية متقدمة، نظام تحكم صارم للعملية. يمكننا تصنيع جميع المحطات الكهربائية أكثر من الطلب.
الصين foshan nanhai ruixin glass co., ltd 100% خدمة
التعبئة السائبة والتعبئة الصغيرة المخصصة، FOB، CIF، DDU و DDP. دعونا نساعدك في إيجاد أفضل حل لكل مخاوفك

الجودة بناء زجاج مقسى & الزجاج المقاوم للإستحمام الصانع

ابحث عن منتجات تلبي احتياجاتك بشكل أفضل
القضايا والأخبار
أحدث النقاط الساخنة
Fused Glass Art: The Poetic Flow and Eternal Craftsmanship
Fused Glass Art: The Poetic Flow and Eternal Craftsmanship In the vast realm of contemporary art and design, fused glass occupies a unique place with its distinctive charm. This art form, which involves shaping glass materials through high-temperature melting and molding, not only breaks the boundaries of traditional glass craftsmanship but also creates stunning visual and tactile experiences. Fused glass, particularly as an important branch of art glass, combines millennia of craft heritage with modern aesthetic demands, becoming an indispensable element in architectural decoration, interior design, and independent art pieces. Let us delve deeper into the characteristics, types, and manufacturing methods of fused glass, unveiling the radiant artistic veil of this medium.   1. Unique Characteristics of Fused Glass Art 1.1 Infinite Possibilities in Form Unlike cold-worked glass, fused glass softens at high temperatures (typically between 600°C and 900°C), allowing artists to shape it freely, much like sculptors. Its forms can be flat or three-dimensional, abstract or realistic, ranging from delicate wavy textures to spectacular three-dimensional reliefs, all reflecting the high malleability of art glass in terms of form.   1.2 Fusion and Transformation of Colors During the melting process, glass materials of different colors can blend with each other, creating natural and gradient color transitions that are difficult to achieve with other glass techniques. Chemical reactions of colorants such as metal oxides at high temperatures can produce a rich palette, ranging from clear transparency to deep, rich hues, giving each fused glass piece its own unique color story.   1.3 Unique Texture and Tactile Quality The surface of fused glass can exhibit a variety of textures, from smooth as a mirror to rough as stone, or somewhere in between. Controlled melting and cooling can create subtle bubbles, textures, or depressions on the glass surface. These "imperfections" often become the hallmark of its artistic character, offering rich tactile experiences and enhancing the interactivity and depth of the piece.   1.4 Exceptional Optical Expression When light passes through fused glass, it refracts, scatters, and reflects due to internal density variations, overlapping color layers, and surface textures, producing dreamlike light and shadow effects. As art glass, it is not merely a static object but also a medium for light, capable of displaying dynamic visual rhythms as the angle and intensity of light change.   1.5 Durability and Practicality Combined Despite its artistic forms, fused glass retains the hardness, corrosion resistance, and easy cleaning properties of glass. After annealing, its internal stresses are released, ensuring stability. It can be widely used in architectural facades, interior partitions, furniture surfaces, and outdoor installations, achieving a perfect unity of artistry and functionality. 2. Main Types of Fused Glass Art 2.1 Flat Fused Glass This is the most common form, where glass materials are melted into flat sheets in molds, often combined with various textures and colors. Widely used in decorative fields such as doors, windows, screens, and feature walls, it is a classic example of art glass that blends practicality and aesthetics.   2.2 Three-Dimensional Relief Glass Created by layering multiple glass sheets or melting them in specially designed relief molds, this type forms three-dimensional patterns. Under light and shadow, the patterns come to life, often used in high-end interior decoration or displayed as independent art sculptures.   2.3 Fused Stained Glass Colored glass pieces cut into shapes are fused together at high temperatures, achieving seamless transitions between color blocks. This technique inherits and innovates upon traditional stained glass craftsmanship, making it suitable for creating vibrant works such as murals, window designs, and lamps.   2.4 Flow Glass By intentionally controlling the flow of glass in its molten state, natural and free color movement patterns are formed, resulting in abstract and dynamic shapes. Each piece of flow fused glass is an unrepeatable work of natural art, highly favored by modern art enthusiasts.   2.5 Composite Fused Glass This type combines other materials, such as metal particles, ceramic pieces, or natural stones, with glass under high temperatures, creating unique aesthetics from mixed materials. This kind of art glass breaks the boundaries of single-material expression, expanding the dimensions of artistic creation. 3. Manufacturing Methods of Fused Glass Art 3.1 Design Concept and Material Selection The creation begins with the artist's inspiration and design sketches. Based on the design, the type of glass (e.g., transparent, colored, or sheet glass) and auxiliary materials are selected. Color matching, thickness, and form must be precisely planned at this stage to ensure the feasibility of subsequent processes.   3.2 Glass Cutting and Arrangement The selected glass is cut into the desired shapes and sizes and arranged in high-temperature-resistant molds (such as ceramic, plaster, or stainless steel molds). The layering order of multiple glass sheets or different colored glasses directly determines the final piece's depth and color effects.   3.3 High-Temperature Melting Process The arranged glass is placed in a specialized electric or gas kiln and slowly heated to the set temperature (typically between 750°C and 850°C, depending on the type and thickness of the glass). At this stage, the glass gradually softens and melts, taking shape within the mold. Precise control of temperature and time is crucial, forming the core of high-quality fused glass production.   3.4 Annealing Treatment The melted and shaped glass must undergo a slow, controlled cooling process—annealing—to eliminate internal stresses and prevent cracking due to uneven cooling. The annealing curve must be scientifically set, sometimes lasting several hours or even dozens of hours, to ensure the structural stability of the glass.   3.5 Cold Working and Finishing After annealing, the piece may require cold working treatments such as edge grinding, surface polishing, or cutting and shaping. For precision art glass, techniques like engraving or sandblasting may also be employed to enhance details, ensuring the final piece perfectly reflects the original design intent.   3.6 Quality Inspection and Installation The final step involves inspecting the finished product for light transmittance, structural integrity, and aesthetic effect. Qualified fused glass pieces are then delivered for professional installation, becoming eternal art that illuminates spaces. Evolving from ancient glass-firing techniques, fused glass has developed into a frontier discipline that combines science, craftsmanship, and art. It not only expands the expressive boundaries of glass as a material but also allows art glass to integrate into modern life in countless forms. Whether as a focal point in architectural spaces or a unique presence in homes, fused glass continues to convey the craftsmanship and creativity of this era through its warm texture, flowing colors, and ever-changing light and shadow. Tempered by flame and time, this fragile material is endowed with eternal vitality, becoming a tangible poem of light in our lives.

2025

12/10

Common Problems and Solutions of Glass Strengthening Furnaces
Common Problems and Solutions of Glass Strengthening Furnaces In the field of glass deep processing, the glass strengthening furnace is a core equipment for realizing strengthening treatments such as glass tempering and lamination. Its operating status directly determines the quality of finished glass products. However, in actual production processes, affected by various factors such as raw materials, operations, and equipment conditions, finished glass products often have various quality defects. Among them, the bubble phenomenon and poor adhesion are the two most common and seriously influential problems. This article will conduct a detailed analysis of the specific causes of these two major problems and provide scientific and implementable solutions to help enterprises improve the yield rate of glass strengthening processing.   I. Causes and Solutions for the Bubble Phenomenon in Finished Glass Products Bubbles are a high-frequency quality problem in glass strengthening processing, especially in the lamination strengthening process of tempered glass. The existence of bubbles will seriously damage the aesthetics and structural stability of glass, and may even lead to the scrapping of entire batches of finished glass products. Through long-term industry practice summary, there are mainly six causes for the occurrence of bubbles in finished glass products, each with clear corresponding solutions.   1. Uneven Surface of Glass In the lamination process of glass strengthening, the flatness of the glass surface is the basis for ensuring the close bonding between the laminated film and the glass. Especially for tempered glass, due to factors such as uneven cooling during its production process, slight surface unevenness or warpage may occur. When such uneven glass undergoes lamination strengthening, tiny gaps will form between the uneven parts and the film. The subsequent heating and pressing processes cannot completely expel these gaps, and finally, visible bubbles will form. For this problem, the most direct and effective solution is to increase the thickness of the film. The thicker film has stronger ductility and filling properties, which can better adapt to the uneven areas on the glass surface and fill the tiny gaps between the glass and the film, thereby reducing the generation of bubbles from the source. It should be noted that the increase in film thickness should be controlled within a reasonable range, which needs to be determined based on the actual unevenness of the glass and the requirements of the strengthening process, to avoid other quality problems caused by excessively thick films.   2. Uneven Thickness of the Film The film is the core bonding material for glass lamination strengthening, and the uniformity of its thickness directly affects the bonding effect between the glass and the film. In actual production, if the operators have misalignment, overlap, or splicing of the film when laying it, it will cause local excessive thickness of the film, while some areas may have insufficient thickness due to splicing gaps. After the film with uneven thickness is compounded with the glass, bubbles will form at the parts with sudden thickness changes due to inconsistent thermal shrinkage.​ To solve this problem, the key lies in standardizing the film laying operation and avoiding misalignment, overlap, or splicing of the film. Production enterprises should formulate strict film laying operation standards, requiring operators to ensure that the film completely covers the glass surface during operation, and that the entire film is flat without overlap or splicing gaps. For large-sized glass that requires coverage with multiple pieces of film, special butt-joint tools should be used to ensure uniform thickness at the film butt-joints, thus eliminating the bubble problem caused by uneven film thickness from the operational perspective.   3. Moisture in Laminated Decorations With the growing demand for decorative glass, many glass strengthening processes add various decorations (such as metal wires, colored paper sheets, dried flowers, etc.) into the lamination to improve the decorative value of the glass. However, if these laminated decorations are not fully dried before use, the residual moisture inside them will evaporate during the heating process of glass strengthening, forming water vapor. This water vapor is trapped between the glass and the film and cannot be discharged in time, eventually condensing into bubbles. At the same time, moisture may also affect the bonding performance of the film, causing multiple quality problems.​ In response to this, the corresponding solution is to fully dry the decorations. Enterprises should establish a pretreatment process for laminated decorations. Before putting the decorations into production, they should be professionally dried using drying equipment. Reasonable drying temperature and time should be set according to the material and moisture content of the decorations to ensure that the moisture inside the decorations is completely evaporated. For some decorations with strong water absorption, a second moisture test can be conducted after drying. Only when the decorations meet the standards can they be used for glass lamination strengthening, eliminating the hidden danger of bubbles caused by moisture from the raw material end.   4. Premature Shutdown of the Vacuum Pump The vacuum system of the glass strengthening furnace is crucial for ensuring no bubbles inside the laminated glass. Its function is to extract the air between the glass and the film to form a vacuum environment, so that the film can closely adhere to the glass during the subsequent heating and pressing processes. In the production process, if the operator is eager to complete the process and shuts down the vacuum pump before the temperature inside the furnace is completely reduced, the residual heat inside the furnace will cause the residual gas between the glass and the film to expand when heated. At the same time, after the vacuum environment is destroyed, external air may also infiltrate, and finally, bubbles will form in the finished glass products.​ To solve the bubble problem caused by this operational error, the solution is to strictly follow the start-stop specifications of the vacuum system, and only stop the vacuum pumping when the temperature drops below 40 degrees Celsius. Enterprises should install temperature monitoring and linkage control devices on the operation panel of the glass strengthening furnace. When the temperature inside the furnace does not drop below 40°C, the vacuum pump cannot be manually stopped. At the same time, training for operators should be strengthened to make them fully aware of the hazards of prematurely shutting down the vacuum pump, ensuring that each process is strictly implemented in accordance with the process parameters.   5. Vacuum Bag Leakage or Vacuum Pump Failure The vacuum bag is a core component of the glass strengthening furnace for realizing the vacuum environment, and the vacuum pump is the equipment that provides vacuum power. If either of them has a problem, it will lead to insufficient vacuum degree inside the furnace. When the vacuum bag has problems such as damage or poor sealing (resulting in air leakage), or the vacuum pump fails to reach the rated vacuum value due to parts aging or failure, the air between the glass and the film cannot be completely extracted. The residual air will expand when heated during the heating process, forming bubbles and seriously affecting the quality of the finished glass products. To solve this problem, efforts should be made from two aspects: equipment maintenance and performance guarantee, namely replacing the silicone bag, ensuring the operation of the vacuum pump, and increasing the vacuum degree to ≥0.094Mpa. On one hand, enterprises should regularly inspect the vacuum bag. Once problems such as damage or seal failure are found, the vacuum bag should be promptly replaced with a new silicone vacuum bag. At the same time, daily maintenance of the vacuum bag should be done well to extend its service life. On the other hand, a regular maintenance system for the vacuum pump should be established. The filter screen of the vacuum pump should be regularly cleaned, the lubricating oil should be replaced, and faulty parts should be repaired or replaced in a timely manner to ensure the stable operation of the vacuum pump. This will keep the vacuum degree inside the furnace at a standard value of 0.094Mpa or above, providing a reliable vacuum environment for the bubble-free processing of glass.   6. Excessively Fast Temperature Rise The heating rate of the glass strengthening furnace is a key process parameter affecting the fusion effect between the glass and the film. If the temperature rises too fast, it will cause uneven heating of the glass, the film, and the air inside the lamination. Especially for films of different materials, they require specific temperature ranges for softening and curing. An excessively fast temperature rise will cause the surface of the film to soften quickly, while the interior is not fully melted. At the same time, the air between the glass and the film cannot be discharged in time and is trapped inside, eventually forming bubbles.​ To solve the bubble problem caused by excessively fast temperature rise, the core is to slow down the temperature rise rate and adopt stepwise temperature rise, and formulate differentiated temperature rise and heat preservation curves according to different film materials. Specifically, if EVA film is used, it is necessary to first raise the temperature to 70°C and keep it warm for 10 to 15 minutes, then raise the temperature to 120°C and keep it warm for 40 to 50 minutes; if PEV film is used, it is required to first raise the temperature to 75°C and keep it warm for 10 to 20 minutes, then raise the temperature to 130°C and keep it warm for 30 to 60 minutes. It should be particularly noted that the heat preservation time depends on the thickness of the glass; the thicker the glass, the longer the required heat preservation time. This ensures that the glass and the film can be fully fused, and the air inside the lamination has sufficient time to be discharged, completely avoiding the generation of bubbles. II. Causes and Solutions for Poor Adhesion of Finished Glass Products In addition to the bubble problem, the poor adhesion of finished glass products is also a common problem in the processing of glass strengthening furnaces. Poor adhesion will cause problems such as degumming and delamination in the glass lamination, greatly reducing the impact resistance and service life of the glass, and failing to meet the safety performance requirements for glass in fields such as construction and decoration. Through industry practice analysis, the poor adhesion of finished glass products mainly stems from three aspects: processing technology, raw material quality, and glass pretreatment. The corresponding solutions are as follows.   1. Insufficient Processing Temperature or Heat Preservation Time In the lamination process of glass strengthening, temperature and heat preservation time are the core parameters determining whether the film can be fully cured and closely bonded to the glass. The adhesive performance of the film can only be fully activated within a specific temperature range and after sufficient heat preservation time. If the processing temperature of the glass strengthening furnace does not reach the standard value required by the process, or the heat preservation time is too short, the film cannot be fully melted and cured, and the intermolecular force between the film and the glass surface is insufficient. Eventually, this will lead to the poor adhesion of the finished glass products.​ To solve the problem of improper control of process parameters, the solution is to ensure the heating temperature and heat preservation time in accordance with the process requirements. Enterprises need to formulate an accurate parameter table of temperature and heat preservation time based on the material of the film used, the thickness of the glass, and the model of the strengthening furnace, and input these parameters into the intelligent control system of the glass strengthening furnace to realize the automatic and accurate control of temperature and time. At the same time, during the production process, a dedicated person should be arranged to monitor the temperature inside the furnace in real time, and the temperature sensor should be calibrated regularly to avoid substandard process parameters caused by equipment temperature measurement errors, ensuring that each batch of glass completes the strengthening processing under the temperature and heat preservation time that meet the requirements.   2. Film Failure As the core bonding material for glass lamination, the performance status of the film directly determines the bonding effect of the glass. If the film is stored in an improper environment (such as a long-term high-temperature, high-humidity environment or direct sunlight), it will cause premature aging and failure of the film; in addition, after the whole roll of film is opened, if it is not used up in time and not stored in a sealed manner, the film will absorb moisture and dust in the air. At the same time, the adhesive components inside the film will oxidize due to contact with air, resulting in a decrease in adhesive force. Using such failed films for glass strengthening processing will inevitably lead to the problem of poor adhesion.​ To avoid the quality hidden dangers caused by film failure, two aspects of work should be done well: first, ensure the film storage environment. Enterprises should establish a dedicated film storage warehouse, control the warehouse temperature at 5-25°C and the relative humidity at 40%-60%. At the same time, the film should be kept away from corrosive substances and direct sunlight. Second, standardize the film use process. After the whole roll of film is opened, it should be used up as soon as possible or stored in a sealed manner. For films that have been stored for a relatively long time, it is recommended to first make small samples to verify whether the adhesive force of the film is normal. The bonding firmness between the film and the glass can be tested by means of edge grinding treatment on the samples. Only when the samples meet the standards can the film be put into mass production.   3. Unclean Glass Surface The cleanliness of the glass surface is the prerequisite for ensuring good adhesion between the film and the glass. If there are impurities such as oil stains, dust, and fingerprints remaining on the glass surface, an isolation layer will be formed between the glass and the film, hindering the molecular bonding between the film and the glass surface, and further leading to the poor adhesion of the finished glass products. Especially in the pretreatment processes such as glass cutting and edge grinding, it is easy to leave processing debris and oil stains on the glass surface. If the glass enters the strengthening process without thorough cleaning, it will directly affect the final bonding effect.​ The key to solving this problem is to do a good job in the pretreatment cleaning of the glass and clean the oil stains and dust on the glass. Enterprises should establish a complete glass cleaning process. Before the glass enters the glass strengthening furnace, the surface floating dust should first be removed by a high-pressure air knife, then the surface should be wiped with a special glass cleaning agent to remove oil stains and stubborn dirt, and finally rinsed with pure water and dried to ensure that no impurities remain on the glass surface. At the same time, the cleaned glass should be well protected against dust to avoid re-contamination with dust during transportation and waiting for processing, creating a clean surface condition for the good adhesion between the film and the glass.

2025

12/08

Difficulties in the Thermal Bending Process of Curved Glass
Difficulties in the Thermal Bending Process of Curved Glass With the rapid development of fields such as consumer electronics, automotive smart cockpits, and smart homes, curved glass has become a core component of many high-end products due to its smooth appearance, excellent optical performance, and outstanding protective capabilities. As the core forming category of curved glass, heat-bent glass has a production process whose maturity directly determines the quality and yield of products. From ordinary flat glass to heat-bent glass that meets the requirements of complex curved surfaces, the entire forming process involves technical challenges in multiple dimensions such as material properties, temperature control accuracy, and mold design. These difficulties have also become key factors restricting the large-scale and high-quality production of the industry.   1. Fundamental Process Challenges Caused by Glass Material Properties The physical and chemical properties of glass itself are the first obstacle in the thermal bending forming process. Commonly used heat-bent glass is mostly high-aluminum-silicon glass or soda-lime glass. Although this type of glass has high strength and light transmittance, it is prone to various defects during the high-temperature thermal bending process. Firstly, there is the issue of matching the thermal expansion coefficient of glass. There are slight differences in the thermal expansion coefficients of glass original sheets from different batches. Thermal bending forming requires heating the glass to its softening point (usually in the range of 600℃-750℃). If the heating rate is uneven or the temperature fluctuates greatly, internal stress will be generated inside the glass due to different degrees of thermal expansion and contraction. After cooling, problems such as warping, cracking, or even spontaneous explosion may occur.​ For curved glass, the design of its curved surface radius and curvature varies greatly. Some are single-curved surfaces, some are double-curved surfaces, and some are even 3D special-shaped curved surfaces. This places extremely high requirements on the ductility of the glass. The forming of heat-bent glass essentially involves the plastic deformation of glass in a softened state. However, glass is a brittle material. During the deformation process, if the local stress is too high or the stretching degree exceeds the material limit, defects such as surface scratches, edge chipping, and wrinkles will appear. Especially for double-curved heat-bent glass, the stress concentration at the edges and the transition areas of the curved surface is more obvious. Once the process parameters are not properly controlled, the yield rate will drop significantly. In addition, the surface cleanliness of the original glass sheet also affects the thermal bending effect. Micro-dust and oil stains on the surface of the original sheet will react with the glass at high temperatures, forming defects such as pitting and bubbles, which seriously affect the appearance and performance of curved glass.   2. Forming Defects Caused by Insufficient Precision of Temperature Control Systems Temperature control is a core link in the heat-bent glass forming process and one of the most difficult technical challenges to overcome. The thermal bending forming of curved glass goes through multiple stages including preheating, heating, heat preservation, forming, and cooling. Each stage has strict requirements on the temperature range and heating/cooling rate. Currently, most thermal bending equipment adopts an integral temperature control system, which is difficult to achieve precise temperature control for different areas of the mold. However, different parts of curved glass (such as the arc top, arc edge, and flat transition area) require different amounts of heat during the forming process. If the temperature distribution is uneven, the softening degrees of different parts of the glass will be inconsistent, leading to problems such as curved surface radius deviation and uneven wall thickness after forming.​ Taking 3D curved glass as an example, its edges need to be bent to an angle close to 90°, and this area requires a higher temperature to ensure the glass is fully softened. However, if the temperature in the middle flat area is too high, it is prone to collapse due to over-softening. If the precision of the temperature control system can only reach ±5℃, it will be unable to meet the forming requirements of complex curved surfaces, and it will be difficult to control the dimensional tolerance of the finished product within the industry standard of ±0.05mm. At the same time, the rate control during the cooling stage is also crucial. Rapid cooling will generate huge thermal stress inside the heat-bent glass, leading to micro-cracks in the glass. On the other hand, excessively slow cooling will reduce production efficiency and may cause crystallization of the glass due to its long-term exposure to high temperatures, which affects the light transmittance and strength of the glass. In addition, the stability of the temperature control system is also of great importance. If temperature drift occurs after the equipment has been in operation for a long time, the forming quality of curved glass in the same batch will be uneven, putting great pressure on subsequent quality inspection and screening.   3. Technical Bottlenecks in Mold Design and Adaptability The mold is a key carrier for the forming of heat-bent glass. The rationality of its design and the adaptability of its material directly affect the final forming effect of curved glass, which is also a long-standing technical bottleneck in the industry. Firstly, in terms of mold material selection, the mold needs to work repeatedly in a high-temperature and high-pressure environment. It must not only have excellent high-temperature resistance and wear resistance but also ensure low adhesion with the glass. Early thermal bending molds mostly used graphite materials. Graphite molds have good thermal conductivity and high-temperature resistance but low hardness. After long-term use, they are prone to wear and deformation, leading to a decline in the dimensional accuracy of curved glass. New ceramic molds, although having high hardness and strong wear resistance, have poor thermal conductivity, which affects the uniform heating of the glass. Moreover, their high cost makes them difficult to promote on a large scale.​ Secondly, in terms of mold structure design, the curved surface shapes of curved glass are diverse. The mold cavity must completely match the curved surface parameters of the product, including the radius of curvature, arc height, and opening angle. Any slight design error will cause the heat-bent glass to have an inconsistent curved surface after forming. At the same time, the design of the mold's exhaust structure is also particularly important. During the forming process of heat-bent glass, air will remain between the mold and the glass. If the exhaust is not smooth, the air at high temperatures will be compressed to form bubbles or leave indentations on the glass surface, damaging the surface flatness of curved glass. In addition, the contact method between the mold and the glass also affects the forming quality. Hard contact is likely to scratch the glass surface, while soft contact may cause adhesion due to insufficient high-temperature resistance of the material. How to balance the contact method and the forming effect is a major problem in mold design. For mass production, the service life and replacement cost of the mold also need to be considered. A set of high-precision molds is expensive, and if the service life is short, it will significantly increase the production cost of heat-bent glass. 4. Supporting Technical Shortcomings in Post-Processing Technology After heat-bent glass is formed, it does not directly become a finished product. It still needs to go through a series of post-processing procedures such as grinding, polishing, and strengthening. The supporting technical shortcomings in post-processing technology have also become important factors restricting the quality improvement of curved glass. The surface of curved glass will inevitably have slight scratches and unevenness during the thermal bending process, which requires grinding and polishing to improve the surface finish. However, the irregular shape of the curved surface poses great challenges to grinding and polishing. Traditional flat grinding equipment cannot adapt to the complex shape of the curved surface, while specialized curved surface grinding equipment is not only expensive but also has problems such as low polishing efficiency and difficulty in controlling surface roughness. If the polishing is not in place, the light transmittance of heat-bent glass will be affected, and it will also fail to meet the appearance requirements of high-end fields such as consumer electronics.​ Strengthening treatment is a key process to improve the strength of heat-bent glass. By means of chemical tempering or physical tempering, a compressive stress layer is formed on the glass surface, which can greatly improve the impact resistance and bending resistance of the glass. However, the strengthening treatment of curved glass is much more difficult than that of flat glass. During chemical tempering, the curved shape of the glass will reduce the uniformity of ion exchange. The thickness of the strengthened layer in the arc edge area is often lower than that in the flat area, making the edge of curved glass a weak point in strength. Physical tempering, on the other hand, is prone to curved surface deformation after tempering due to the uneven stress on the curved glass. In addition, the connection between the post-processing procedures of heat-bent glass is also crucial. If the glass is not cleaned properly after grinding, the remaining grinding fluid will affect the strengthening effect. If the glass has dimensional deviations after strengthening, it cannot be corrected twice and can only be scrapped, which further reduces the overall yield of curved glass.   5. Process Upgrade Challenges Under Industry Development With the continuous upgrading of market demand for curved glass, the forming process of heat-bent glass is also facing new challenges. On one hand, the consumer electronics field has increasingly high requirements for the thinness and lightness of curved glass. The thickness has gradually decreased from the original 0.7mm to 0.3mm or even thinner. Ultra-thin glass is more prone to deformation and cracking during the thermal bending process, which places higher requirements on the stability and precision of the process. On the other hand, curved glass in the automotive field has larger sizes and more complex curved surfaces. For example, the 3D curved glass used in in-vehicle large screens not only needs to meet the forming requirements of large sizes but also needs to have special properties such as UV resistance and anti-glare. This requires integrating more functional technologies into the selection of original sheets and the forming process of heat-bent glass.​ At the same time, the concept of green and environmentally friendly production has also put forward new standards for the heat-bent glass process. Some release agents and cleaning agents used in traditional processes have environmental risks, so it is necessary to develop more environmentally friendly alternative materials. However, this may affect the forming quality and production efficiency of curved glass. In addition, the trend of intelligent production requires the integration of the heat-bent glass process with technologies such as automated inspection and big data analysis to realize real-time monitoring of the production process and parameter optimization. However, the equipment and systems of most enterprises have not yet completed intelligent upgrades, making it difficult to realize the full-process quality traceability and process iteration.   Conclusion As the core forming product of curved glass, the process difficulties of heat-bent glass run through the entire production process from raw materials to post-processing, involving multiple technical dimensions such as materials, temperature control, molds, and post-processing. With the rapid development of downstream application fields, the market demand for curved glass continues to grow, and the requirements for product quality and process level are becoming increasingly strict. Only by continuously breaking through technical bottlenecks such as temperature control precision, mold design, and post-processing support, and integrating the concepts of intelligent and green production, can we promote the continuous upgrading of the heat-bent glass forming process, meet the diversified and high-quality needs of various industries for curved glass, and help the industry achieve high-quality development.​

2025

12/06